STIMULATION OF BIOGAS PRODUCTION FROM SEWAGE SLUDGE BY SUPPLEMENTS ADDITION

M. Ciezkowska⁽¹⁾, K. Poszytek⁽²⁾, A. Sklodowska⁽³⁾, L. Drewniak⁽⁴⁾

(1)(2)(3)(4)Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland mciezkowska@biol.uw.edu.pl

INTRODUCTION

Anaerobic digestion (AD) is a common method of wastes treatment aimed at reduction of the amount of organic waste and energy recovery. AD is a complex process carried out by a number of microorganisms whose activities are determined by a variety of physicochemical parameters, as well as the availability of the nutrient substrates and growth supplements.

OBJECTIVE

The objective of this work was to investigate the effect of addition of microbial supplements on the biogas production during anaerobic digestion of sewage sludge. During semi-continuous anaerobic digestion of sewage sludge from municipal sewage treatment plant in Oswiecim, the following supplements were tested:

- "microbial vaccine" containing specialized strains of archaea, bacteria and fungi variant M
- "methanogenesis supplements" containing organic compounds which could stimulate the activity of methanogenic archaea S variants: (i) S-CS supplement prepared from cattle slurry, (ii) S-L supplement prepared from sewage sludge and (iii) S-H hydrolysing extract.

EXPERIMENTAL

Anaerobic digestion in semi-continuous mode was carried out in the single-stage anaerobic laboratory reactor. The operating volume of the bioreactors was 1L. Digestion process took place for 20 days and was carried in 37°C. For the control of the anaerobic digestion process, the following parameters were determined: the volume and composition of the biogas, volatile fatty acids (VFAs), total solids (TS), volatile solids (VS), chemical oxygen demand (COD), total ammonia (NH₃) and pH. Daily biogas production was monitored by Milligascounter MGC-1 (Ritter). Methane content was analyzed by gas chromatography GC/MS (Agillent).

RESULTS

Fig. 1. Efficiency of biogas production; (A) cumulative biogas production; (B) maximal methane content during anaerobic digestion process

Table 1. The chemical analyses and total cell count of digeste during anaerobic digestion process

Microbial supplements	Control			M			S-H			S-L			S-CS		
Parameters	ТО	T10	T20	то	T10	T20	то	T10	T20	то	T10	T20	то	T10	T20
pH [-]	8,1	7,94	7,68	8,04	8,03	7,65	8,04	8,02	7,65	7,84	7,87	7,46	8,14	7,86	7,7
COD [g/l]	11,1	14,9	21,1	14,8	15,1	17,4	15,5	15,7	23,9	20,5	18,5	30,7	11,1	21,1	29,6
VFA [g/l]	2,27	6,58	12,39	3,34	7,58	1,7	5,07	8,01	10,01	5,66	7,39	12,27	12,83	7,21	8,47
NH ₃ [mg/l]	8,1	7,94	8,17	0,94	1,75	2,19	1,92	1,73	2,01	1,01	1,86	2,3	3,3	2,2	2,56
DAPI [cells/ml]	1,3E+08	1,22E+08	9,23E+07	2,19E+08	1,85E+08	1,62E+08	 1,40E+08	1,43E+08	2,91E+08	7,52E+07	 1,41E+08	2,65E+08	2,78E+08	6,77E+08	5,70E+08

The results showed that only addition of the microbial vaccine M and the supplement S-L increased biogas production during anaerobic digestion of sewage sludge. Addition of those products resulted in enhanced biogas production (of 24% for S-L and 5% for M) and increased quality (elevated amount of methane) of the produced biogas. Furthermore, the addition of the M vaccine and S-L supplement also increased the reduction of organic matter. The reduction degree for control was 55%, while for anaerobic digestion with the M vaccine and S-L supplement was at the level of 83% and 85%, respectively.

CONCLUSIONS

The obtained results showed that the applied microbial vaccine and S-L supplement could efficiently enhance biogas production from sewage sludge.

